AUF1 contributes to Cryptochrome1 mRNA degradation and rhythmic translation

نویسندگان

  • Kyung-Ha Lee
  • Sung-Hoon Kim
  • Hyo-Jin Kim
  • Wanil Kim
  • Hwa-Rim Lee
  • Youngseob Jung
  • Jung-Hyun Choi
  • Ka Young Hong
  • Sung Key Jang
  • Kyong-Tai Kim
چکیده

In the present study, we investigated the 3' untranslated region (UTR) of the mouse core clock gene cryptochrome 1 (Cry1) at the post-transcriptional level, particularly its translational regulation. Interestingly, the 3'UTR of Cry1 mRNA decreased its mRNA levels but increased protein amounts. The 3'UTR is widely known to function as a cis-acting element of mRNA degradation. The 3'UTR also provides a binding site for microRNA and mainly suppresses translation of target mRNAs. We found that AU-rich element RNA binding protein 1 (AUF1) directly binds to the Cry1 3'UTR and regulates translation of Cry1 mRNA. AUF1 interacted with eukaryotic translation initiation factor 3 subunit B and also directly associated with ribosomal protein S3 or ribosomal protein S14, resulting in translation of Cry1 mRNA in a 3'UTR-dependent manner. Expression of cytoplasmic AUF1 and binding of AUF1 to the Cry1 3'UTR were parallel to the circadian CRY1 protein profile. Our results suggest that the 3'UTR of Cry1 is important for its rhythmic translation, and AUF1 bound to the 3'UTR facilitates interaction with the 5' end of mRNA by interacting with translation initiation factors and recruiting the 40S ribosomal subunit to initiate translation of Cry1 mRNA.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Combinatorial mRNA binding by AUF1 and Argonaute 2 controls decay of selected target mRNAs

The RNA-binding protein AUF1 binds AU-rich elements in 3'-untranslated regions to regulate mRNA degradation and/or translation. Many of these mRNAs are predicted microRNA targets as well. An emerging theme in post-transcriptional control of gene expression is that RNA-binding proteins and microRNAs co-regulate mRNAs. Recent experiments and bioinformatic analyses suggest this type of co-regulati...

متن کامل

Chaperone Hsp27, a novel subunit of AUF1 protein complexes, functions in AU-rich element-mediated mRNA decay.

Controlled, transient cytokine production by monocytes depends heavily upon rapid mRNA degradation, conferred by 3' untranslated region-localized AU-rich elements (AREs) that associate with RNA-binding proteins. The ARE-binding protein AUF1 forms a complex with cap-dependent translation initiation factors and heat shock proteins to attract the mRNA degradation machinery. We refer to this protei...

متن کامل

Similar regulation of human inducible nitric-oxide synthase expression by different isoforms of the RNA-binding protein AUF1.

The ARE/poly-(U) binding factor 1 (AUF1), a protein family consisting of four isoforms, is believed to mediate mRNA degradation by binding to AU-rich elements (ARE). However, evidence exists that individual AUF1 isoforms may stabilize ARE-containing mRNAs. The 3'-untranslated region of the human inducible nitric-oxide synthase (iNOS) contains five AREs, which promote RNA degradation. We have re...

متن کامل

Identification of a signature motif in target mRNAs of RNA-binding protein AUF1

The ubiquitous RNA-binding protein AUF1 promotes the degradation of some target mRNAs, but increases the stability and translation of other targets. Here, we isolated AUF1-associated mRNAs by immunoprecipitation of (AUF1-RNA) ribonucleoprotein (RNP) complexes from HeLa cells, identified them using microarrays, and used them to elucidate a signature motif shared among AUF1 target transcripts. Th...

متن کامل

AUF1 p42 isoform selectively controls both steady-state and PGE2-induced FGF9 mRNA decay

Fibroblast growth factor 9 (FGF9) is an autocrine/paracrine growth factor that plays vital roles in many physiologic processes including embryonic development. Aberrant expression of FGF9 causes human diseases and thus it highlights the importance of controlling FGF9 expression; however, the mechanism responsible for regulation of FGF9 expression is largely unknown. Here, we show the crucial ro...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 42  شماره 

صفحات  -

تاریخ انتشار 2014